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ABSTRACT

The paper introduces a dynamic model for firm growth, demonstrating that Gibrat’s law is associated with a Laplace distribution of growth rates. By 
considering the relationship between size and growth rate, the analytical model predicts heavier tails than those observed in the Laplace distribution, 
indicating that Gibrat’s law is not generally applicable. The theory is validated through an analysis of companies in the pharmaceutical sector, showing 
strong alignment with empirical data without the need for free parameters.
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1. INTRODUCTION

The evolution of firms is a topic of significant economic interest. 
To account for the distribution of firm sizes, Gibrat proposed that 
firm size S(t) and growth rates g(t) are statistically independent, a 
principle known as Gibrat’s law or the law of proportionate effects 
(Gibrat, 1931). Typically, the size of a firm is measured by its total 
assets or sales (e.g. Stanley et al., 1996; Geroski, 2000; Bottazzi 
and Secchi, 2006; Kang, 2021). The growth process of the i-th 
firm can be described as:
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At time step:

t’ = t+Δt� (2)

the growth rate of the i-th firm is defined for a time interval 
Δt�=�1 by:
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According to this view, firm size results from independent 
multiplicative fluctuations (or shocks). The central limit theorem 
suggests that the logarithm of the firm size distribution converges 
to a Gaussian distribution, consistent with empirical observations 
(e.g. Fabritiis et al., 2003; Cabral and Mata, 2003; Reichstein and 
Jensen, 2005). The size distribution of firms can be given by a 
lognormal distribution of the form:
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with market specific scaling parameters μ and σLN.

However, empirical studies have shown that the anticipated 
Gaussian growth rate distribution is not backed by the data. Research 
indicates that the growth rate distributions of firms closely resemble 
a Laplace distribution, which is sharply peaked at the centre and 
features fatter tails compared to a Gaussian distribution. (see e.g. 
Stanley et al. (1996), Amaral et al. (1997), Bottazzi et al. (2002),  
Bottazzi and Secchi (2003), Bottazzi and Secchi (2005),Reichstein 
and Jensen (2005), Dosi et al. (2010), Alfarano et al.(2012), Coad 
(2012), Zou (2019)). Several explanations for this observation have 
been proposed (e.g. Fu et al. (2005), Kaldasch (2012), Metzig and 
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Gordon (2014), Ishikava et al.(2016), Bottazzi and Secchi (2019)).

Research further found that smaller firms tend to make more 
significant leaps in growth, as highlighted by several authors 
(e.g., Bottazzi and Secchi, 2006; Riccabonia et al., 2008; Gabaix, 
2011; Aratat, 2019). The empirical analysis suggests a relationship 
between size and variance of growth rates. The standard deviation 
of growth rates can be written as:

std(g) = C1S
β (5)

while C1 is a constant and the exponent varies between 
−0.15�<�β�<�−0.2.

In this paper a dynamic approach to the growth rate dynamics of 
firms is established. It is based on the growth rate dependent 
conservation equation of firms of a market. Derived is the 
stationary growth rate distribution P(g) for an ensemble of firms 
with total number N .1 It is based on the following assumptions:
(i) The growth rates of firms change through small random 

fluctuations on the growth rate scale.
(ii) New firms enter the market with an initial growth rate of g�=�0.
(iii) Firms exit the market due to reasons such as mergers or 

bankruptcies at an exit rate d(t,g), which is independent of the 
growth rate and proportional to the current number of firms N(t,g).

(iv) During the specified time interval of investigation ΔT, the total 
number of firms N  can be considered approximately constant.2

(v) The size-variance relationship of growth rates (5) applies.

After presenting the theory, the model is compared to an empirical 
study by Fabritiis et al. (2003), which supports the proposed model.

2. THE THEORY

Considered is a market for a time interval ΔT. N(t,g) is the number 
of firms falling in the growth rate interval g and g+dg, The growth 
rate distribution P(t,g) at time step t is defined by:

P t g N t g
N t

,
( , )

( )
( ) =



 (6)

With the total number of firms at t:

N t N t g dg( ) = ( )
−∞

∞

∫ ,  (7)

The dynamics of the ensemble of firms N(t,g) is governed by the 
following conservation equation:

∂ ( )
∂
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The time-dependent evolution of N(t,g) is influenced by three 
processes, represented by the three terms on the right side of this 
equation. The number of firms increases at the rate r(t,g) and 

1 A tilde over variables indicates total numbers.
2 Assumption (iv) applies if the total number of firms ( )N t  is much larger 

than time dependent variations of their number ( )N tδ  , ( ) ( )N t N tδ 

 . 

decreases at the exit rate d(t,g). The last term in (8) accounts for 
the time evolution of firms’ growth rates. Based on assumption 
(i) firms perform a random walk on the growth rate scale. The rate 
j(t,g) can therefore be modeled as:

j t g D
N t g
g

,
,

( ) = −
∂ ( )
∂

 (9)

where the parameter D�>�0�is treated as a constant3.

The rate at which firms exit the market per unit time, d(t,g), is 
proportional to their total number N(t,g) and a rate of 1/τ, where τ 
represents the average lifespan of a firm (iii). It can be expressed as:

d t g N t g, ,( ) = ( )1

τ
 (10)

Applying (7) and (8) the total number of firms is given by:

dN t
dt

r t d t
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with the total rates:

r t r t g dg( ) = ( )
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∞

∫ ,  (12)

And

d t d t g dg( ) = ( )
−∞

∞

∫ ,  (13)

Inserting (10) into (13) the total exit rate becomes with (7):


d t N t( ) = ( )1

τ
 (14)

Assumption (iv) requires:

dN
dt



≅ 0  (15)

From (11) follows therefore:



r t d t( ) ≅ ( )  (16)

Based on assumption (ii) new firms enter the market at growth 
rate g�=�0. With (14) and (16) the rate r(t,g) can thus be written as:

r t g N g, ( )( ) ≅ 1
τ

δ  (17)

where the Dirac δ�-function ensures that the entry of firms is located 
at g�=�0. 4 The evolution of the number of firms (8) becomes with 
(9), (10) and (17):

3 D is equivalent to a diffusion coefficient in particle physics.
4 The Dirac delta function is a distribution of the form: δ(g-g’)=∞ for g=g’ 

and 0 for g≠g’ ,normalized to one.
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Scaling (18) by the total number of firms N  we obtain with (6) 
a partial differential equation for the evolution of the growth rate 
distribution P0(t,g), consistent with Gibrat’s law. Multiplying the 
relation with τ�leads to: 5

∂
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while
k2 = τD (20)

The time evolution of the growth rate distribution is examined in 
Appendix A. The stationary growth rate distribution is determined 
by a Laplacian of the form:

P g
k

g
k0

1

2
( ) exp= −









  (21)

where the standard deviation of the distribution is:

std(g) = √2k (22)

However, according to assumption (v), the standard deviation 
of the growth rate is a function of the firm size defined by (5). 
Comparing the relations (5) and (22) indicates that the parameter 
k must be a function of the firm size S:

k(S) = C2S
β (23)

while:

C C
2

1

2
=  (24)

Taking this size-dependence of the growth rate (23) into account 
the stationary growth rate distribution can be obtained from the 
integral:

P g P g k S P S dSS( ) = ( ) ( )
∞

∫
0

0 , ( )  (25)

where the firm size distribution PS(S) is given by (4). It is convenient 
to consider the firm size S on a logarithmic scale, such that:

s = ln(S) (26)

On this scale (4) becomes a normal distribution and (23) turns into:

k(s) = C2e
βs (27)

The stationary growth rate distribution (25) has therefore finally 
the form:

5 Such a relation is known as a convection-diffusion equation. 
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where μ is the mean firm size on a logarithmic scale, σN the 
corresponding standard deviation and k(s) is given by (27).

3. COMPARISON WITH AN EMPIRICAL 
INVESTIGATION

The model is applied to an empirical study conducted by Fabritiis 
et al. (2003), who extensively examined the size and growth 
distributions of products and business firms within the global 
pharmaceutical industry over a time span of ΔT�=� 10� years. 
Utilizing data from the Pharmaceutical Industry Database (PHID) 
at CERM/EPRIS, they analyzed quarterly sales data for 48,819 
pharmaceutical products marketed by 3,919 companies in the 
European Union and North America, covering the period from 
September 1991 to June 2001. Their findings indicated that the 
size distribution of firms aligns with a log-normal distribution, 
yielding the parameters μ�=�4.63 and σN�=�1.97. Additionally, they 
observed that the standard deviation of firm growth rates tends 
to decrease with increasing firm size, as described by equation 
(5), with C1≅1.51 and β≅−0.16. Figure 1 presents the empirical 
growth rate data from their research on a logarithmic scale (dots).

The theory presented relies on four parameters: μ, σN, C2 and β. 
Since all these parameters are known for the market considered, 
the model can be applied without any free parameters. A numerical 
integration of (28) with (27) yields the solid line shown in Figure 1, 
demonstrating that the calculated growth rate distribution closely 

6 For mathematical simplicity the presented model has neglected the Pareto 
tail of the size distribution. This contribution becomes relevant for small 
growth rates and may account for the discrepancies observed between the 
empirical data and the model near the centre of the distribution.

Figure 1: Displayed is the empirical growth rate distribution of firms 
investigated by Fabritiis et al. (2003) (dots). The solid line is the 
numerical integration of (28) applying the reported data μ�=�4.63, 
σN�=�1.97, C2�=�1.07 and�β�=�−0.16.6 The dotted line indicates the 

growth rate distribution of firms of mean size μ.
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aligns with empirical data.

The model allows an estimation of parameters for firms of average 
size of the market considered. With μ�=�4.63 the average value of 
the parameter k can be obtained from (27). For these firms the 
growth rate distribution is given by the Laplace distribution (21) 
with kμ�=�0.51, displayed in Figure 1 by the dotted line. The mean 
lifetime τ�can be obtained from (14). The investigators reported a 
nearly constant number of firms of the order N ≅ 2000 , which 
leads for an exit rate of firms of about d≅200 per year, to a mean 
lifetime τ≅10 years. The relation (20) further yields Dμ≅2.63≅10−2 
per year.

4. CONCLUSION

Presented is a dynamic model for the evolution of firm growth 
rates, relying on a growth rate-dependent conservation equation 
of firms. According to this model firm’s growth rate evolves by a 
small random amount over time. When accounting for firm entry 
and exit, the model suggests that Gibrat’s law is associated with 
a Laplace distribution of the growth rates rather than a normal 
distribution (illustrated by the dotted line in Figure 1 for firms of 
average size). Smaller firms experience larger random fluctuations 
in their growth rates compared to larger firms, as indicated by 
Bottazzi and Secchi (2006) and Aratat (2019). Taking into account 
this size-variance relationship, the model predicts heavier tails than 
a standard Laplace distribution, a finding supported by empirical 
studies conducted e.g. by Reichstein and Jensen (2005), Buldyrev 
et al. (2007), and Bottazzi et al. (2011). Consequently, Gibrat’s 
law is applicable only to firms of comparable size and does not 
hold true for a diverse range of firm sizes.

Applying the theory to firm growth in the pharmaceutical sector, 
as investigated by Fabritiis et al. (2003), a strong alignment with 
empirical data can be obtained when utilizing the reported data. 
Furthermore, Fabritiis et al. (2003) analysed the growth rate 
distribution of products, as shown in Figure 2 (squares). Assuming 
that the theory is applicable also to products, the model yields a 

growth rate distribution that aligns closely with the empirical data 
(solid line).76 This finding indicates that the model may also be 
relevant for other economic growth rate data, provided that the 
model’s conditions are met.

In summary, the established theory effectively captures the growth 
dynamics of firms and offers valuable insights into the relationship 
between growth and firm size, as supported by empirical evidence.
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The partial differential equation (19) can be solved by applying 
a one-dimensional Fourier transform of the distribution 
defined by:
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The Fourier transform of (19) with respect to g yields:
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The time dependent ordinary differential equation (A3) can be 
solved with:
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where C(ω)� is an integration constant. For t→∞, the stationary 
distribution becomes in Fourier space:
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The inverse Fourier transform of (A6) can be performed with 
(A2) using (A4):
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Hence the stationary growth rate distribution has the form8:1
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8 The Fourier transform of (A5) yields the time evolution of (19). Starting 
with a normal distribution P0(t,g) approaches the Laplace distribution (A8) 
for t>>τ.
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